97碰碰碰人妻视频无码,亚洲人成网站18禁止大APP,香蕉视频在线精品视频,性色AV一区二区三区,蜜臀色欲AV在线播放国产日韩

所長(cháng)信箱   |    信息公開(kāi)   |    內部辦公   |    內部辦公(舊)   |    ARP   |   圖書(shū)館   |    中國科學(xué)院   |    ENGLISH
深??茖W(xué)與工程研究所
深??茖W(xué)與工程研究所
當前位置:首頁(yè) > 學(xué)術(shù)成果 > 2025 > 論文
論文
  
論文題目  Reshaping of New Nitrogen Regime by Anticyclonic Eddies in the Northern South China Sea 
論文題目(英文) Reshaping of New Nitrogen Regime by Anticyclonic Eddies in the Northern South China Sea  
作者 Tian, Juan;張玥;荊紅梅;Ren, Haojia;Mao, Huabin;Zhou, Hantao;Zheng, Minfang;Chen, Mengya;Zhang, Run;Chen, Min 
發(fā)表年度 2025 
 
 
頁(yè)碼  
期刊名稱(chēng) JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 
摘要 Mesoscale anticyclonic eddies (ACEs) act as an important physical disturbance for marine biogeochemical cycle, but our knowledge of the dynamics of critical new nitrogen (N) sources in such environments remains ambiguous. Here, we report concurrent data on two major sources of new N, that is, the N-2 fixation rate (via N-15(2) bubble release method) and vertical diffusive nitrate flux (F-diff-NO3-), for the euphotic zone (EZ) in the northern South China Sea ACEs during summer 2020. Depth-integrated N-2 fixation rates (INF) were moderately elevated (similar to 30%) in the center of the ACEs compared with those in the outside stations, suggesting that ACEs generally provide a more favorable environment for N-2 fixation. In contrast, the upward F-diff-NO3- into the EZ were greatly lowered by an order of magnitude in the ACE center (center: 26.0 +/- 8.2 mu mol N m(-2) d(-1); outside: 124.0 +/- 127.6 mu mol N m(-2) d(-1)), thus making N-2 fixation a much more significant contributor to new production under ACE influence. Such contribution is further demonstrated in the nutrient depleted layer where substantial carbon export may be taking place. Interestingly, a significant positive correlation for the ratio of the INF to the upward F-diff-NO3- versus sea level anomaly was observed. ACE will likely leave an imprint on the isotopic composition of exported N, implying that there is possibly a need to take mesoscale forcings into account when interpreting isotopic signals from sinking particles. These findings will improve our understanding of N-2 fixation dynamics in response to mesoscale ACEs in tropical/subtropical oceanic regions, also helping better constrain biogeochemical models. 
摘要_英文  

Copyright © 中國科學(xué)院深??茖W(xué)與工程研究所 備案證號:瓊ICP備13001552號-1   瓊公網(wǎng)安備 46020102000014號
地址: 三亞市鹿回頭路28號 郵編:572000 網(wǎng)站維護:深海所辦公室   郵箱:office@idsse.ac.cn